
acm Inroads • inroads.acm.org  47

Coderunner:
A Tool for Assessing
Computer
Programming Skills

CONTRIBUTED ARTICLESARTICLES

By Richard Lobb and Jenny Harlow,
The University of Canterbury

How should we assess programming skills? Asking students
to write code in a traditional hand-written exam can
produce results like those in Figure 1. It is nearly impossible
to meaningfully grade such code. With sufficient effort one
can get some idea of whether the general idea is correct, but
to assess programming skill we need much more than this.
For example, there will almost certainly be errors in the
code; how do we know whether the student would be able to
correct those errors or not?

We pity the marker faced with grading code like that in Figure
1, but shouldn’t we be even more sympathetic to the student who
had to write it? Modern programming is an on-line process in-
volving interaction between the programmer and the computer.
Few programmers get their code correct on the first try—testing
and debugging is an integral part of the programming process. To
assess programming skills, we should provide students with an
authentic programming environment in which they can develop
and test their code. Only then is it fair for us to run their code and
use correctness tests as our measure of their ability.

Examinations are just one aspect of assessment. In intro-
ductory programming courses we usually also assess laboratory
and assignment work.

This article introduces a new tool that helps with all these
different assessment requirements.

INTRODUCING CODERUNNER
CodeRunner [1,2,6] is a free and open-source Moodle [3] ques-
tion-type plug-in that lets teachers set questions where the an-
swer is program code. Students develop and test their code us-

ing a normal development environment and submit the code to
CodeRunner through a web browser only when they believe it is
correct. A key assumption behind CodeRunner is that the quiz
in which the questions appear is running in Moodle’s adaptive
mode, which gives students immediate feedback on the correct-
ness of their answer and allows them to resubmit for a penalty.

Figure 1: What grade is this worth?

48  acm Inroads  2016 March • Vol. 7 • No. 1

Coderunner: A Tool for Assessing Computer Programming Skills

ARTICLES

• In this example, there are hidden test cases to prevent students
synthesizing an answer that works just for the supplied tests.

The format of the feedback was inspired by Nick Parlante’s
codingbat website [4]. The green ticks and green feedback panel
coloring seems to be extraordinarily motivating. Students work
very hard to get their answers right the first time and obvious
signs of delight often accompany the appearance of a green re-
sult table in the labs. Even question developers get satisfaction
from correctly answering their own trivial problems!

CodeRunner provides a flexible penalty regime that allows au-
thors to tailor the grading to the context; for example, one might
have some questions that apply no resubmission penalties, some
that allow one or two free submissions followed by an increasing
10% penalty for each subsequent wrong submission, and others
that apply a 100% penalty for even one wrong submission.

CodeRunner can support any text-based programming lan-
guage. Built-in question types are available for C, Java, Python,
PHP, JavaScript and Octave (Matlab). CodeRunner is highly
scalable: questions can range from simple fill-in-the-blank cod-
ing questions through to fairly major assignments. Because it
is just another Moodle question type, test or exam quizzes can
mix CodeRunner questions with other computer-graded ques-
tion types like multi-choice, numeric, short answer, or match-
ing. One can even incorporate essay questions graded by hu-
mans. In a learning context such as laboratories the “quizzes”
may include “description” questions, which are actually just
tutorial material, for example, an introduction to if-statements
or loops. The quizzes can then become the primary learning
medium. Being web-based, they can be done by students from
home or after-hours, freeing the course from many of the con-
straints imposed by scheduled laboratories, which can instead
become help sessions for students who need the extra support.

CodeRunner is used at the University of Canterbury for
teaching programming courses in Python, C, Octave and Mat-
lab. CodeRunner is particularly well suited to introductory
programming courses, for which students need lots of practice
with small programming problems that teach the different lan-
guage constructs and techniques. However, CodeRunner has
also been used at higher levels, for example in theoretical com-
puter science papers for testing things like finite-state automata
and compiler construction, in an artificial intelligence course
for Clojure programming, and in a web programming course
for assessing student-authored websites.

CODERUNNER IN ACTION
Figures 2 and 3 show a simple Python CodeRunner question
that asks the students to write a function squares(n) that re-
turns a list of the squares of all integers from 1 to n inclusive.
Figure 2 shows what the student sees after an incorrect submis-
sion. Figure 3 shows the state after a correct submission. Here
are some key things to note.
• The student gains immediate feedback by clicking the Check

button.
• The feedback is a table that shows the tests that were

used, the expected output from each test of the student’s
function, and the actual output. Green ticks denote correct
outputs, red crosses wrong ones.

• The feedback panel is colored red if any of the outputs are
wrong (the default “all or nothing” grading method) and
zero marks are awarded. When the student resubmits a
correct answer (Figure 3) the entire panel goes green and
a mark of 100% is awarded (less whatever penalty has
accumulated, in this case 10%).

Figure 2: The simple Python question, wrongly answered.

Figure 3: The simple Python question, correctly answered.

acm Inroads • inroads.acm.org  49

ARTICLES

prisingly, teachers appear to actually enjoy designing CodeRun-
ner questions. Devising and implementing a good question
to test some aspect of programming is both challenging and
rewarding. Developing a new question type for a whole class
of programming problems generally involves some coding by
the question author and proves particularly enjoyable. Contrast
that with writing questions for written examinations, which is
rarely if ever thought to be fun.

WHAT SORT OF QUESTIONS CAN BE ASKED?
Every CodeRunner question is an instantiation of a prototype
question, which essentially defines the “type” of the question.
A set of built-in prototypes define a range of “write a function,”
“write a program,” or “write a class” questions for the standard
languages, but question developers can define their own proto-
types to provide extra functionality.

The prototype defines, by means of a template, what pro-
gram should be executed for a given student answer and test
case. The resulting program is compiled and run, and the out-
put from that run is compared with the expected output to
determine if the code passes that particular test. For security,
execution of the wrapped student code usually takes place on a
separate machine, called the sandbox server.

The use of a customizable template to define the program
to be executed provides great flexibility. It allows the question
author to use the student’s answer in many different ways. A
major application of this flexibility is some form of pre-process-
ing that validates the student submission before running it. This
can be illustrated in two important ways.
• Style-checking students’ submissions. For Python we can

enforce compliance with the industry-standard pylint style
checker [6] before the code is accepted for execution. For
Octave (Matlab) question types we have written templates
that apply local style rules and can enforce limits on both
program and function size.

• Enforcing and/or restricting the use of particular
programming constructs. For example, we have questions
in several languages of the form “rewrite the following
program using a while loop instead of a for loop.” The
student’s code is rejected without being run if the pre-
processer detects any for loops present.

The language used for the prototype can be different from that
used to execute the student’s submission. For example, one of
our local Octave style checkers uses a template in Python to
check students’ code before submitting it to Octave for execu-
tion. This distinction between the template language and what
is being checked is used in most of the following examples, all
of which exploit the flexibility of templates.
• A question in a compiler-construction course where the

student’s submission is a simple compiler that outputs
Java Virtual Machine (JVM) code. The template code first
executes the student’s code on a test program and then runs
the output from that on the JVM.

WHAT’S DIFFERENT ABOUT CODERUNNER?
Computerized testing environments are nothing new but, we
suggest, the Moodle/CodeRunner combination is fundamen-
tally different from most such environments.
• CodeRunner is a free open-source plug-in for the free

open source Moodle learning platform [3], which is used
worldwide by thousands of universities and schools.

• The Moodle/CodeRunner combination can be used
throughout the course in laboratories, tests, assignments,
and even final exams. Assessment, grade recording, and
distribution of course material are thus all consolidated on
the same platform.

• Because CodeRunner is integrated with the Moodle
learning platform, CodeRunner questions can be
intermingled with tutorial information (“description”
questions) and other question types.

• CodeRunner supports an essentially unlimited range of
programming languages and is very flexible in terms of the
type of question that can be asked (see below), the penalty
structure used, and even the form of feedback displayed.

• An added benefit of the consolidated approach described
above is that students become very familiar with the
environment so that the stress of online tests and
examinations is considerably reduced.

STAFF AND STUDENT FEEDBACK ABOUT
CODERUNNER
Students have generally been very positive about CodeRun-
ner. They particularly value the immediate feedback. In a lab-
oratory context, the instant grading of each question helps
maintain motivation. Students work very hard to get the
green ticks and almost never move on having been marked
wrong on a question—they take the time to get it right before
continuing. And students report to us that they appreciate
being able to track their level of understanding throughout
the laboratory.

In an exam context, students also report finding the immedi-
ate feedback helpful as it removes the uncertainty of not know-
ing how they’re going and they appreciate leaving the exam
room knowing their grade. As one student said “Instant quiz
servers are great! Immediate test marks are awesome!”

Teachers have also been very positive about CodeRunner.
Unsurprisingly, they appreciate having to do little or no test
and exam marking, particularly with large classes. More sur-

Students work very hard to get
the green ticks and almost never

move on having been marked wrong
on a question—they take the time

to get it right before continuing.

50  acm Inroads  2016 March • Vol. 7 • No. 1

Coderunner: A Tool for Assessing Computer Programming Skills

ARTICLES

functions are named, or how appropriately chosen the
functions are, we also still have humans evaluate the quality
of the final superquiz submissions, imposing a small style
penalty for poor code.

• Occasional optional drill quizzes, which contribute nothing
to the grade of the course but provide students with extra
practice.

• A mid-semester test. This test, worth 15% of the course
grade, is an invigilated 1.5-hour test, mostly using questions
from the laboratories and the drill quizzes. Questions are
randomized, each selected from a small pool of options, so
that each student gets a different test but with the spread of
questions and overall difficulty being very similar for all.

• A final exam, worth 55% of the grade. This is an invigilated
3-hour exam, set in the laboratories. Both the exam and the
test use a locally-developed environment that provides the
same program development tools as in the laboratories but
which prevents web access or other outgoing connections,
except to the quiz server.

Having an online exam rather than a hand-written one can
yield some interesting insights. Moodle provides statistics on
how students perform on each question, so we can immediately
spot topic areas that might warrant further teaching effort in
the future and also questions that prove problematic (e.g., that
appear to discriminate against good students). The progress
of individual students through an exam—we call this a mark
or grade trajectory—can be plotted, as in Figure 4 below. This
shows that most students were close to their final mark just
one hour into the three hour exam, but there were also a small
number of slow steady students whose mark increased steadily
throughout the exam.

LIMITATIONS OF CODERUNNER
Although CodeRunner has proved very valuable over a wide range
of assessment activities, there are some fundamental limitations.
• Code-quality tools like pylint have proved very valuable

in raising style awareness and improving code quality
but abuses of the style rules still occur, and the quality of
comments and identifiers cannot be assessed by computer.
Hence COSC121 still reserves some small portion of its in-
course assessment for human-graded code quality.

• A question in which the student’s answer is just a URL
referencing a web page they have built on a separate server. The
template code then performs tests on the referenced web page.

• A question type in which a student submits a textual
description of a Finite State Machine (FSM) and the
question developer’s code (written in Python) validates and
grades the FSM’s behavior.

• A python-tkinter question type in which the student’s
answer involves a graphical user interface (GUI).
The template code for this question includes a mock
implementation of the small tkinter subset taught in the
course, allowing the question author to test the behavior of
the GUI in various ways.

Normally, the correctness of a student’s submission is val-
idated by comparing the actual output from the run with the
expected output for each test, but it is also possible to incorpo-
rate the grading process into the template itself, as is done in the
FSM example above.

In principle any question that can be graded by a computer
can be posed as a CodeRunner question, though CodeRunner
is best suited to dealing with exercises where the tests can be
presented to the students in tabular form.

CODERUNNER IN THE INTRODUCTORY
PROGRAMMING COURSE
CodeRunner was initially developed for use in our introducto-
ry programming course COSC121, taught in Python, though it
has since spread into several other courses in computer science,
engineering and mathematics. While originally introduced
purely as a way of assessing laboratory work, CodeRunner quiz-
zes have now become the primary way in which the COSC121
course is taught and assessed. A departmental Moodle server
has been set up just to run the quizzes.

Currently, there are a number of assessments within
COSC121.
• Ten lab quizzes, one per week, each worth 1% of the course

grade. Having these on the web has had some unexpected
spin-offs. Students are much more able to work at home,
easing the pressure on scheduled laboratories, which
become more like help sessions for students. Maintenance
and polishing of these “laboratories” is much easier, too.
If an error is detected during a scheduled lab, we simply
correct it there and then and all students immediately see
the updated version.

• Four “assignment superquiz” quizzes, which replace the
traditional single assignment we used to set. Together these
contribute to 20% of the course assessment. Having a staged
sequence of tasks is less daunting for weaker students
than a single large assignment and has resulted in a higher
participation rate in the final exam. Assignment quizzes
and lab quizzes all require that students submit code that is
accepted by the Python style checker, pylint [5]. However,
since no program can evaluate how well the variables and

While originally introduced
purely as a way of assessing

laboratory work, CodeRunner quizzes
have now become the primary

way in which the COSC121 course
is taught and assessed.

acm Inroads • inroads.acm.org  51

ARTICLES

• CodeRunner is best suited to relatively simple tasks with
a precise specification. Although any question in which
the answer can be assessed by a computer program can
in principle be cast as a CodeRunner question, the time
required to write a grader for a complex task often makes the
approach not worthwhile, particularly for smaller classes.

• The answer to a CodeRunner question must be a single block
of text (in most of the examples in this article the “text” is
code). This limits CodeRunner’s applicability in more advanced
programming courses where multiple files are involved

• Although the author of a CodeRunner question can in
principle generate any form of feedback, even including
graphics, the normal results display is tabular, with one table
row per test case and with simple exact matching of expected
output with actual output. If test cases require large blocks
of code or if there is considerable output from each test,
the sheer size of the results display can make it difficult for
students to see why their answer is being marked wrong.

• Assessing questions with graphical output is problematic,
though we have started to make some steps in that
direction. We have built a mock of the Python GUI toolkit
tkinter for grading GUIs in COSC121 and have questions
that assess the correctness of graphs generated by calls to
Matlab’s graphing library. But assessing the correctness of
an image or even the output from a turtle graphics program
is hard or even impossible.

• Finally it must be mentioned that writing good quiz
questions and good tests can be very time consuming
even for low-level programming courses. Sharing question
databases with other teachers would be a huge help here
and also in setting up some sort of repository to facilitate
such sharing is a future priority.

CONCLUSION
Moodle/CodeRunner quizzes have transformed several of our
programming courses. The ability to mix traditional style ques-
tions with coding questions has proved very valuable for both
laboratory and examinations. Staff and students have both been
very positive in their response to CodeRunner. Staff enjoy us-
ing CodeRunner and are pleased to be able to directly assess
the actual skill they’re trying to teach (programming). They are
particularly pleased not to have to grade hand-written code.
Students are very positive about the instant feedback they get.
They like the intermingling of tutorial material, normal Moodle
questions, and CodeRunner questions in laboratories and they
respond well to being able to take tests and exams with most of
their standard tools on hand. 

References
 1. CodeRunner demo site; http://coderunner.org.nz. Accessed 2015 May 21.
 2. CodeRunner repository; https://github.com/trampgeek/CodeRunner. Accessed

2015 May 21.
 3. Moodle; http://www.moodle.org. Accessed 2015 May 21.
 4. Nick Parlante’s CodingBat site; http://codingbat.com. Accessed 2015 May 21.
 5. PyLint Python style checker; http://www.pylint.org/. Accessed 2015 May 21.
 6. Video on CodeRunner; https://www.youtube.com/watch?v=I6AO5CobNyo.

Accessed 2015 May 21.

Richard Lobb
Department of Computer Science and Software Engineering,
The University of Canterbury

Jenny Harlow
School of Mathematics and Statistics
The University of Canterbury

DOI: 10.1145/2810041 ©2016 ACM 2153-2184/16/03 $15.00

Figure 4: Grade trajectories for all students in a CodeRunner-based exam.

